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USE OF THE GAMMA DISTRIBUTION IN SINGLE-CLOUD 
RAINFALL ANALYSIS 
JOANNE SIMPSON-Experimental Meteorology Laboratory, Environmental Research 
Laboratories, NOAA, Miami, Fla. 

ABSTRACT-This study is based on the radar-evaluated 
rainfall data from 52 south Florida cumulus clouds, 26 
seeded and 26 control clouds, selected by a randomization 
procedure. The fourth root of the rainfall for both seeded 
and control populations was well fitted by a gamma dis- 
tribution for probability density. The gamma distribu- 
tion is prescribed by two parameters, one for scale and one 
for shape. Since the coefficient of variation of seeded and 
control cloud populations was the same, the shape param- 
eters for the two gamma distributions were the same, while 

the seeded population’s scale parameter was such as to 
shift the distribution to higher rainfall values than the 
control distribution. The best-fit gamma functions were 
found by application of the principle of maximum entropy. 

Specification of tractable distributions for natural and 
modified rainfall populations provides an  important pre- 
requisite for the evaluation of seeding effects by Bayesian 
statistics, a continuing objective in the Experimental 
Meteorology Laboratory cumulus seeding programs. 

In meteorology, the gamma function has been used 
extensively to fit rainfall data on fairly large space and 
time scales, ranging from individual storms up to monthly 
and yearly distributions (Thom 1958, 1968, and references 
therein). Recently, the Experimental Meteorology Labora- 
tory (EML) has found this function of great value in 
analyzing radar-evaluated rainfalls from single Florida 
cumulus clouds, both natural and seeded. 

In  1968 and 1970, EML conducted randomized pyro- 
technic seeding experiments on single clouds in south 
Florida. The seeding was done massively, to release the 
heat of fusion latent in the supercooled water and, under 
predictable conditions, to cause the seeded clouds to grow 
larger and process more water than their unseeded coun- 
terparts. A one-dimensional model (Simpson and Wiggert 
1971) was run in real time to predict seedability(excess 
vertical growth of seeded clouds). The rainfall analyses 
were made using the University of Miami 10-cm calibrated 
radar (Woodley 1970) and results were tested against a 
rain gage network (Woodley and Herndon 1970). Alto- 
gether, 26 seeded and 26 control clouds were compared 
(Simpson et al. 1971). Statistical analyses showed that the 
seeding effect on rainfall exceeded a factor of three; there 
was a mean seeded minus control difference of about 270 
acre-feet per cloud. The statistical significance of the 
difference mas better than 0.05. 

In  connection with a Bayesian analysis of more com- 
plicated sequel experiments (Simpson and PBzier 1971) , 
it  became necessary to seek a tractable distribution 
function; that is, a function with finite, readily specified 
moments to fit these single-cloud rainfall data. While 
this effort has so far encountered obstacles when the raw 
data are used, the gamma function was found extremely 
useful in treating their fourth root, or the “transformed” 
data, as we shall show briefly here The idea of trans- 
forming these data by taking their fourth root was intro- 

duced by G. F. Cotton (see appendix, Woodley et al. 1970) 
in his statistical analyses, for the purpose of making 
certain significance tests mote applicable. The raw and 
transformed data are presented in table 1; their origin and 
limitations have been described elsewhere (Woodley et al. 
1970). 

The gamma probability density function may be written 

where p(R)  is the probability density of a rainfall amount, 
R (here measured in acre-feet), from a single cloud. The 
scale of the distribution is determined by the parameter /3 
and the shape by the parameter cr. r is the gamma function 
(Pearson 1951). The first two moments of the gamma 
function are well known to be (e.g., Tribus and PBzier 
1970, Kendall and Stuart 1963) 

and 

where <R> is the expected value and uz is the variance. 
Therefore, the coefficient of variation, V ,  is 

(4) 

The best-fit gamma functions to the transformed data 
in table 1 are found by application of the principle of 
maximum entropy. Tribus (1969, p. 197) has shown that 
this method, readily computerized, gives better fits than 
the classical chi-square approach, which is in fact an 
approximation to the maximum-entropy method. The 
same principle is applied to find the best fit to  the data of 
six other well-known functions, as listed in table 2, and 
then the excellence of the fits are compared by means of 
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TABLE 3.-Results of program DAMAXS2 for single-cloud trans- 
formed rainfalls 

TABLE 1.-Single-cloud data for 1968 and 1970 

Total cloud lifetime 
Seeded rain Control rain 

I. Unseeded Cases _________ ~~~ 

Acre-feet Fourth root Acre-feet Fourth root 

3.37405 26. 1 2. 26027 
31. 4 2. 36719 26. 3 2. 26459 

2, 745. 6 7. 23868 87. 0 3.05408 
489. 1 4. 70272 95. 0 3. 12199 
430. 0 4.55373 372.4 4. 39291 

129. 6 
Parameters 

Rela- 
tive 

proba- 
Distribution -Log A B C bility 

302.8 
119.0 

4. 1 
92. 4 
17. 5 

200.7 
274. 7 
274. 7 

7. 7 
1. 656. 0 

4. 17147 
3. 30283 
1. 42297 
3. 1004 
2. 04531 
3. 76389 
4. 07113 
4. 07113 
1.6658 
6. 37918 
5. 59223 
3. 754 
5. 14992 
6. 41906 
4. 27532 
3. 29797 
3. 99609 
3. 27686 
3. 94619 
2. 39132 
2. 52424 

0 
17. 3 
24. 4 
11. 5 

321. 2 
68. 5 
81. 2 
47. 3 
28. 6 

830. 1 
345.5 

1, 202. 6 
36. 6 

4. 9 
4. 9 

41. 1 
29. 0 

163. 0 
244. 3 
147. 8 
21. 7 

0 (1) 
2. 03944 
2. 22253 
1. 84151 
4. 23344 
2.87689 
3.00185 
2. 6225 
2. 31255 
5. 36763 
4. 31134 
5. 88885 
2. 45963 
1. 48782 
1.48782 
2.53198 
2. 3206 
3. 57311 
3.95349 
3. 48673 
2. 15832 

Tr. normal 
Gamma 
Weibull 
Log-normal 
Rayleigh 
Inverted 

gamma 
Inverted 

Rayleigh 

4. 38621 
0. 491139 
2. 34166 
3.08051 
2. 31008 

2. 26211 
5. 523 
1.801 
5. 15809 
2.5878 

0. 383128 0. 0515 
2. 2236 0. 271176 
3. 43X 0. 0943 
3.08645 0.256951 
0. 180015 0. 169842 

-11. 7724 -7. 16194 15. 3737 0. 124435 

-4. 22864 -4. 21716 8.40303 0. 0316 

Distribution X 2  978. 0 
198.6 
703.4 

1, 697. 8 
334.1 
118. 3 
255. 0 
115.3 
242. 5 
32. 7 
40. 6 

Tr. normal 
Gamma 
Weibull 
Log-normal 
Rayleigh 
Inverted gamma 
Inverted 

Rayleigh 

12.78 
9. 46 

11.57 16 Degrees 
9. 57 of 

10.39 
11. 02 

Freedom 

13. 75 

11. Seeded Cases 

Parameters 
Rela- 
tive 

proba- 
Distribution -Log A B C bility 

TABLE 2.-Probability distribution functions 

Distribution 
Truncated normal 
Gamma 
Weibull 
Log-normal 
Rayleigh 
Inverted gamma 
Inverted Rayleigh 

Equation for p ( R )  
A exp (Bz- Czz) 
A xB exp (-Cx) 
A xB exp (- CzB+l) 
A sB exp (- C log 2 2 )  

A x B  exp (- Cs2) 
A zB  exp (-C/s) 
A xB exp (- C/zz) 

Tr. normal 
Gamma 
Weibull 
Log-normal 
Rayleigh 
Inverted 

gamma 
Inverted 

Rayleigh 

5. 43878 2. 14824 0. 273406 0. 121835 
2. 47642 6. 10433 1. 83149 0. 244059 
3.34546 2.017 1. 168X 0. 183406 

0. 142415 5. 34034 7. 34813 3. 25198 
3. 59768 3. 00345 0. 117279 0. 251999 

- 13.8461 -7. 29359 20. 9373 0. 0467 

- 5. 17874 -4. 23249 14. 9841 0. 0958 

the chi-square test and by relative probabilities. The 
latter are found using Bayes’ equation, following the 
procedure described by Tribus (1969, p. 156 and ff.). 
All these calculations are made by means of a computer 
program entitled DAMAXS2, described and listed else- 
where (Simpson and PQzier 1971). The result4 are shown 
in table 3. 

The first important result is that the gamma distribution 
is either best or a close second from either criterion, for 
both seeded and control data. The second important 
result is that CI and V are nearly identical for both popu- 
lations, namely 

Unseeded 
a=6.16 v=0.40 (5) 
p=2.22 

<R>=afp=2.78 
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Distribution X 2  

Tr. normal 
Gamma 
Weibull 
Log-normal 
Rayleigh 
Inverted 

gamma 
Inverted 

Rayleigh 

13.02 
11. 63 
12.21 
12. 71 16 Degrees 
11.57 of 

14. 94 
Freedom 

18. 11 

and 
Seeded 

a=7.10 v=0.38 (6) 
@= 1.83 

<R> =alp= 3.88. 
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FIQURE 1.-Histogram and best-fit curves for the transformed 
rainfall (acre-feet) from the unseeded clouds. The grouping of the 
data is by intervals of 0.5. In  the DAMAXS2 program, the group 
interval is a/3. 
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FIGURE 2.-Histogram and best-fit curves for the transformed rain- 
fall (acre-feet) from the seeded clouds. 

This result says that the seeding does not appreciably 
affect the shape or coefficient of variation ’ of the distri- 
bution but merely advances the mean of the transformed 
data by a factor (in this case about 1.4). In  any meteoro- 
logical experiment, if  one can demonstrate or assume that 
the modification has this simple type of effect upon the 
data distribution (or on one of its roots), Bayesian 
analysis provides an easy and powerful tool for calculating 
the. magnitude and significance of the modification, as 
we have shown elsewhere (Simpson and PBzier 1971). 

Figures 1 and 2 show the data histograms with the 
best-fit gamma and truncated normal distributions 
superposed. Although table 3 shows that the truncated 
normal distribution has a x2 much smaller than the 
number of degrees of freedom for both data populations, 
it does not show well either the skewness or the mode of 
the data. In  the case of the truncated normal distribution, 
a complicated relation exists between the parameters B 
and C in table 2 and the first two moments of the distri- 
bution. Tribus (1969, p. 171) provides a computer 

* A direct calculation of V from the fourth root data of table 1 gives 0.43 and 0.37 for 
unseeded and seeded populations, respectively, or a difference of 13 percent. Using the 
raw data, we get 1.69 and 1.47, again a difference of 13 percent. 
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24 I 

FIGURE 3.-Histogram of raw data distributions for 1968 and 1970 
single clouds combined, 50-acre-feet subdivisions. 

program’ for finding these moments, given B and C. 
Using it, we found again that the best-fit curves for the 
seeded and unseeded cloud populations had very similar 
coefficients of variation; that is to say, the seeded 
population had a higher mean and a correspondingly 
higher standard deviation than the unseeded population. 
Clearly, the gamma distribution is most ideally suited 
to the analysis because the observed conservative 
property ( V )  of the unseede,d and seeded populations is 
directly and simply related to the shape parameter, 
a, in the equation for the probability density. 

Finally, a histogram of the raw data for seeded and 
control cases combined is shown in figure 3. The only 
distribution giving a good fit to these data is the inverted 
Rayleigh, which does not have finite moments and is 
not, therefore, very useful. Alternatively, we might use- 
fully regard this graph as showing two separate popu- 
lations, one with many members and small rainfalls, 
the other with few members and very large rainfalls. 
Consequently, an attempt is being made to treat each 
raw data set (seeded and control) as the sum of two gamma 
distributions. 
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